SANTIAGO NUMÉRICO II

Quinto Encuentro de Análisis Numérico de Ecuaciones Diferenciales Parciales Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Diciembre 9–11, 2010

Numerical approximation of the spectrum of the curl operator^{*}

Rodolfo Rodríguez † Pablo Venegas[†]

Abstract

Vector fields \boldsymbol{H} satisfying $\operatorname{curl} \boldsymbol{H} = \lambda \boldsymbol{H}$, with λ being a scalar field, are called *force-free fields*. This name arises from magnetohydrodynamics, since a magnetic field of this kind induces a vanishing Lorentz force: $\boldsymbol{F} := \boldsymbol{J} \times \boldsymbol{B} = \operatorname{curl} \boldsymbol{H} \times (\mu \boldsymbol{H})$. In 1958 Woltjer [7] showed that the lowest state of magnetic energy density whithin a closed system is attained when λ is spatially constant. In such a case \boldsymbol{H} is called a *linear* force-free field or just a *Trkalian field* [6] and its determination is naturally related with the spectral problem for the curl operator. The eigenfunctions of this problem are known as *free-decay fields* and play an important role, for instance, in the study of turbulence in plasma physics.

The spectral problem for the curl operator, $\operatorname{curl} H = \lambda H$, has a longstanding tradition in mathematical physics. A large measure of the credit goes to Beltrami [1], who seems to be the first who considered this problem in the context of fluid dynamics and electromagnetism. This is the reason why the corresponding eigenfunctions are also called *Beltrami fields*. On bounded domains, the most natural boundary condition for this problem is $H \cdot n = 0$, which corresponds to a field confined within the domain. Analytical solutions of this problem are only known under particular symmetry assumptions. The first one was obtained in 1957 by Chandrasekhar and Kendall [4] in the context of astrophysical plasmas arising in modeling of the solar crown.

More recently, some numerical methods have been introduced to compute forcefree fields in domains without symmetry assumptions [2, 3]. In this work, we propose a variational formulation for the spectral problem for the curl operator which, after discretization, leads to a well-posed generalized eigenvalue problem. We propose a method for its numerical solution based on Nédélec finite elements of arbitrary order [5]. We prove spectral convergence, optimal order error estimates and that the method is free of spurious-modes. Finally we report some numerical experiments which confirm the theoretical results and allow us to assess the performance of the method.

^{*}This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile. [†]Cl²MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile, e-mail: rodolfo@ing-mat.udec.cl, pvenegas@ing-mat.udec.cl

References

- E. BELTRAMI, Considerazioni idrodinamiche, Rend. Inst. Lombardo Acad. Sci. Let., 22 (1889) 122–131. (English translation: Considerations on hydrodynamics, Int. J. Fusion Energy, 3 (1985) 53–57.)
- [2] T. Z. BOULMEZAUD AND T. AMARI, Approximation of linear force-free fields in bounded 3-D domains, *Math. Comp. Model.*, **31** (2000) 109–129.
- [3] T. Z. BOULMEZAUD AND T. AMARI, A finite element method for computing nonlinear force-free fields, *Math. Comp. Model.*, **34** (2001) 903–920.
- [4] S. CHANDRASEKHAR AND P. C. KENDALL On force-free magnetic fields, Astrophys. J., 126 (1957) 457–460.
- [5] J. C. NÉDÉLEC, Mixed finite elements in \mathbb{R}^3 , Numer. Math., **35** (1980) 315–341.
- [6] V. TRKAL, Poznámka k hydrodynamice vazkých tekutin, Časopis pro Pěstování Mathematiky a Fysiky, 48 (1919) 302–311.(English translation: A note on the hydrodynamics of viscous fluids, Czech J. Phys., 44 (1994) 97–106.)
- [7] L. WOLTJER, Prod. Natl. Acad. Sci. USA, 44 (1958) 489–491.