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Abstract

The well-known kinematic sedimentation model by Kynch states that the settling veloc-
ity of small equal-sized particles in a viscous fluid is a function of the local solids volume
fraction. This assumption converts the one-dimensional solids continuity equation into
a scalar, nonlinear conservation law with a non-convex and local flux. The present work
deals with a modification of this model, and is based on the assumption that either
the solids phase velocity or the solid-fluid relative velocity at a given position and time
depends on the concentration in a neighborhood via convolution with a symmetric ker-
nel function with finite support. This assumption is justified by theoretical arguments
arising from stochastic sedimentation models, and leads to a conservation law with a
nonlocal flux. The alternatives of velocities for which the nonlocality assumption can be
stated lead to different algebraic expressions for the factor that multiplies the nonlocal
flux term. In all cases, solutions are in general discontinuous and need to be defined
as entropy solutions. An entropy solution concept is introduced, jump conditions are
derived and uniqueness of entropy solutions in shown. Existence of entropy solutions
is established by proving convergence of a difference-quadrature scheme. It turns out
that only for the assumption of nonlocality for the relative velocity it is ensured that
solutions of the nonlocal equation assume physically relevant solution values between
zero and one. Numerical examples illustrate the behaviour of entropy solutions of the
nonlocal equation.
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